## POZNAN UNIVERSITY OF TECHNOLOGY



## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

## **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Steel bridges

**Course** 

Field of study Year/Semester

Civil engineering II/3

Area of study (specialization) Profile of study

Road, bridge and railway engineering general academic
Level of study Course offered in

Second-cycle studies polish

Form of study Requirements part-time compulsory

**Number of hours** 

Lecture Laboratory classes Other (e.g. online)

10

Tutorials Projects/seminars

8 10

**Number of credit points** 

4

**Lecturers** 

Responsible for the course/lecturer: Responsible for the course/lecturer:

Wojciech Siekierski

## **Prerequisites**

steel structures, strength of materials, building mechanics

# **Course objective**

transfer of knowledge in the field of analysis of: a) orthotropic decks, b) box girders, c) thermal and rheological phenomena in composite bridges, d) spans made of encased steel beams, e) rigid chord in a truss girder

## **Course-related learning outcomes**

Knowledge

- a) knows in depth the principles of analysis, construction and dimensioning of elements and connections in selected buildings
- b) has advanced detailed knowledge of material strength issues, material and structure modeling; has knowledge of the theoretical basis of the Finite Element Method and general principles of nonlinear calculations of engineering structures
- c) knows the principles of design, construction and operation of selected buildings in greater depth

## POZNAN UNIVERSITY OF TECHNOLOGY



## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

d) has advanced detailed knowledge of the theoretical basis of the analysis and optimization of structures and the design of selected buildings

#### Skills

- a) is able to assess and compile loads acting on simple and complex building structures
- b) is able to design elements and connections in complex construction objects, working individually or in a team
- c) can perform classic static and dynamic analysis and stability analysis of rod structures (trusses, frames and tendons) statically determinate and indeterminate and surface structures (shields, plates, membranes and shells)
- d) is able to correctly define a computer computational model and conduct an advanced linear analysis of complex buildings, their elements and connections, and apply basic techniques of non-linear calculations along with a critical evaluation of the results of numerical analysis

## Social competences

- a) is responsible for the reliability of the obtained results of his work and the work of his team
- b) is ready to independently supplement and expand knowledge in the field of modern processes and technologies in construction
- c) is aware of the need to improve professional and personal competences, is ready to critically evaluate the knowledge and content received

#### Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

lecture: written exam; pass mark: 50% of points

exercises: final test; pass mark: 50% of points

project: assessment of the correctness of the exercise performed

# **Programme content**

structure, analysis and technology of orthotropic deck, box girder analysis, analysis of thermal and rheological phenomena in composite bridges, analysis of spans made of steel encased beams, analysis of a rigid chord in a truss girder

#### **Teaching methods**

lecture: multimedia presentation supported by the content provided on the blackboard

exercises: multimedia presentation supported by the content given on the blackboard and carrying out the tasks given by the teacher - practical exercises

project: carrying out a task given by the teacher

## POZNAN UNIVERSITY OF TECHNOLOGY



## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

#### **Basic**

Madaj A., Karlikowski J., Wołowicki W., Mosty zespolone stalowo-betonowe, WKŁ, Warszawa, 2016

Ryżyński A., Wołowicki W., Karlikowski J., Skarżewski J., Mosty stalowe. PWN, Warszawa-Poznań, 1984

Karlikowski J., Sturzbecher K., Mosty stalowe. Przewodnik do ćwiczeń projektowych. Wyd. PP, Poznań, 1993

Czudek H., Pietraszak T., Stalowe pomosty użebrowane. Obliczenia i konstruowanie. Arkady, Warszawa, 1978

#### Additional

Cusens A.R., Pama R.P., Analiza statyczna pomostów. WKŁ, Warszawa, 1981

Flaga A. Mosty dla pieszych. WKŁ, Warszawa, 2011

Jarominiak A., Mosty podwieszone. Oficyna Wyd. Politechniki Rzeszowskiej, Rzeszów, 1998

Biliszczuk J., Mosty podwieszone. Projektowanie i realizacja. Arkady, Warszawa, 2005

# Breakdown of average student's workload

|                                                                   | Hours | ECTS |
|-------------------------------------------------------------------|-------|------|
| Total workload                                                    | 100   | 4,0  |
| Classes requiring direct contact with the teacher                 | 28    | 1,0  |
| Student's own work (literature studies, preparation for           | 72    | 3,0  |
| laboratory classes/tutorials, preparation for tests/exam, project |       |      |
| preparation) <sup>1</sup>                                         |       |      |

3

<sup>&</sup>lt;sup>1</sup> delete or add other activities as appropriate